HyperStudio enables students to construct multimedia stacks of cards (similar to a collection of 3" × 5" cards but arranged nonlinearly and accessed by "buttons" for moving from card to card). A card can include sound effects, animation, speech, text, graphics, video clips, and so forth.

Grade level: 8th–12th grades

Subject: geography

Length: five 40-minute class periods

Step 1: Select a lesson.

In this lesson, student groups create a software program that plans a trip and gives information about a place they would like to visit.

Step 2: Make decisions.

Group size: 2–3 students

Group assignment: Students select groups according to places they would like to visit.

Materials needed: HyperStudio or HyperCard and encyclopedias and other references.

Assigning tasks: The keyboarder listens to group ideas and responds to suggestions as he or she uses the keyboard and mouse. The role of keyboarder rotates among the team members. Decision making is shared by all team members.

Step 3: Set the lesson.

Task: The teacher introduces the topic of places in the world by asking students the place they have visited that is farthest away from where they live. The teacher explains that students will be working in teams who will visit, by way of computer, someplace in the world.

Students think about the continent they would like to visit. They are directed to parts of the room according to the continent they have selected. When each student finds 1–2 others with an interest in the same continent, the student sits in a group with the others and helps agree on a specific destination for the group’s simulated visit.

The entire class brainstorms some of the things that are done when planning a visit to a new country (e.g., buying tickets for travel; finding out about the country’s weather, historical sites, national heroes, monuments, animals, parks; setting an itinerary).

The teacher directs the entire class as they create a stack of cards on the computer about their destinations. Cards, buttons, and fields are created on the computer for the stack.

Positive interdependence: Each group member contributes ideas and helps plan and create the program. Each group member helps the group make decisions.

Individual accountability: Each group member creates at least one card of the stack and does special research focusing on one topic of the group’s destination.

Criteria for success: a completed stack of cards

Specific behaviors expected: contributing ideas, listening to others’ ideas, sharing the keyboarding work, and helping the group come to consensus

Step 4: Monitor and process the student groups.

Evidence of expected behaviors: students reading about their destinations, discussing and sharing ideas, and planning and creating their stack of cards

Plans for processing: All groups will have a chance to use other groups’ stacks. There will be a session to reflect on what was learned about the other groups’ destinations and about the group process of listening to each others’ ideas and making decisions.

(continued)
will want to take the time to systematically teach them, as described previously.) Your criteria for success are a completed book and reading the book aloud to the class. You will call on one person at random from each team to do the reading, so all students will need to make sure that the whole team can read all of the words.

- For Step 4, you plan how you will observe the group working both at the computer and at a table as the members plan their book, share their sentences, and complete their assignment at the computer. Design an easy-to-use observation sheet so that you can give precise feedback on teamwork during the processing portion of the lesson.

- Step 5 in the lesson planning format provides you with a place to reflect on the outcomes of your lesson once you have tried the cooperative learning strategy with your students.

COMPUTER LABORATORY

The computer laboratory is the ideal place for students to complete drafts of a composition, edit earlier work, and print final copies. However, some computer labs may not be set up for small groups to share their work or for a teacher to conduct discussions with his or her entire class about discoveries, challenges, or strategies that are or are not working. In some schools, teachers will want to be sure to work collaboratively with the computer specialist, who can be a great asset in helping to select appropriate software, training “expert” students in the chosen software’s operation, and making sure that all of the equipment is running smoothly. For teachers fortunate enough to have this extra support, they will want to share their cooperatively structured lesson plan with the computer specialist and solicit participation in all aspects of the lesson (e.g., observing the groups, contributing precise feedback about perfor-